3.576 \(\int \sqrt{\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=205 \[ -\frac{(a (A-B)-b (A+B)) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a (A-B)-b (A+B)) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a (A+B)+b (A-B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(a (A+B)+b (A-B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}+\frac{2 b B}{d \sqrt{\cot (c+d x)}} \]

[Out]

((b*(A - B) + a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((b*(A - B) + a*(A + B))*ArcTan
[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) + (2*b*B)/(d*Sqrt[Cot[c + d*x]]) - ((a*(A - B) - b*(A + B))*Log[
1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) + ((a*(A - B) - b*(A + B))*Log[1 + Sqrt[2]*Sqrt[
Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.241681, antiderivative size = 205, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.29, Rules used = {3581, 3591, 3534, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{(a (A-B)-b (A+B)) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a (A-B)-b (A+B)) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d}+\frac{(a (A+B)+b (A-B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(a (A+B)+b (A-B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d}+\frac{2 b B}{d \sqrt{\cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

((b*(A - B) + a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) - ((b*(A - B) + a*(A + B))*ArcTan
[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*d) + (2*b*B)/(d*Sqrt[Cot[c + d*x]]) - ((a*(A - B) - b*(A + B))*Log[
1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d) + ((a*(A - B) - b*(A + B))*Log[1 + Sqrt[2]*Sqrt[
Cot[c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \sqrt{\cot (c+d x)} (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\int \frac{(b+a \cot (c+d x)) (B+A \cot (c+d x))}{\cot ^{\frac{3}{2}}(c+d x)} \, dx\\ &=\frac{2 b B}{d \sqrt{\cot (c+d x)}}+\int \frac{A b+a B+(a A-b B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{2 b B}{d \sqrt{\cot (c+d x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{-A b-a B+(-a A+b B) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 b B}{d \sqrt{\cot (c+d x)}}-\frac{(b (A-B)+a (A+B)) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}+\frac{(a (A-B)-b (A+B)) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 b B}{d \sqrt{\cot (c+d x)}}-\frac{(b (A-B)+a (A+B)) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}-\frac{(b (A-B)+a (A+B)) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 d}-\frac{(a (A-B)-b (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}-\frac{(a (A-B)-b (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} d}\\ &=\frac{2 b B}{d \sqrt{\cot (c+d x)}}-\frac{(a (A-B)-b (A+B)) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}+\frac{(a (A-B)-b (A+B)) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}-\frac{(b (A-B)+a (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{(b (A-B)+a (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}\\ &=\frac{(b (A-B)+a (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}-\frac{(b (A-B)+a (A+B)) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d}+\frac{2 b B}{d \sqrt{\cot (c+d x)}}-\frac{(a (A-B)-b (A+B)) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}+\frac{(a (A-B)-b (A+B)) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} d}\\ \end{align*}

Mathematica [A]  time = 0.209834, size = 178, normalized size = 0.87 \[ -\frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (2 \sqrt{2} (a (A+B)+b (A-B)) \left (\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )+\sqrt{2} (a (A-B)-b (A+B)) \left (\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )-8 b B \sqrt{\tan (c+d x)}\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

-(Sqrt[Cot[c + d*x]]*(2*Sqrt[2]*(b*(A - B) + a*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + S
qrt[2]*Sqrt[Tan[c + d*x]]]) + Sqrt[2]*(a*(A - B) - b*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*
x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) - 8*b*B*Sqrt[Tan[c + d*x]])*Sqrt[Tan[c + d*x]])/(4*d
)

________________________________________________________________________________________

Maple [C]  time = 0.47, size = 2187, normalized size = 10.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

-1/2/d*2^(1/2)*(cos(d*x+c)/sin(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(cos(d*x+c)-1)*(-I*A*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a+I*B*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b+I*B*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a-I*B*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b-I*B*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a-I*A*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*b+I*A*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b+I*A*sin(d*x+c)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a+A*sin(d*x+c)*((1-cos(d*x+c)+sin
(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*Elli
pticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a-A*sin(d*x+c)*((1-cos(d*x+c)+sin(d
*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*Ellipt
icPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b+A*sin(d*x+c)*EllipticPi(((1-cos(d*x
+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*
x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*a-A*sin(d*x+c)*EllipticPi(((1-cos(d*x+c
)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+
c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*b-2*A*sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c
))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF(
((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*a-B*sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c)
)^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+
c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a-B*sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^
(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)
+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*b-B*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin
(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/
sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*a-B*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d
*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/si
n(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*b+2*B*sin(d*x+c)*((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2
)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(
d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*b-2*B*cos(d*x+c)*2^(1/2)*b+2*B*2^(1/2)*b)/cos(d*x+c)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [A]  time = 1.67797, size = 240, normalized size = 1.17 \begin{align*} -\frac{2 \, \sqrt{2}{\left ({\left (A + B\right )} a +{\left (A - B\right )} b\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt{2}{\left ({\left (A + B\right )} a +{\left (A - B\right )} b\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) - \sqrt{2}{\left ({\left (A - B\right )} a -{\left (A + B\right )} b\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt{2}{\left ({\left (A - B\right )} a -{\left (A + B\right )} b\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - 8 \, B b \sqrt{\tan \left (d x + c\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*((A + B)*a + (A - B)*b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*((A +
 B)*a + (A - B)*b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((A - B)*a - (A + B)*b)*log
(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*((A - B)*a - (A + B)*b)*log(-sqrt(2)/sqrt(tan(d*x
+ c)) + 1/tan(d*x + c) + 1) - 8*B*b*sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \left (a + b \tan{\left (c + d x \right )}\right ) \sqrt{\cot{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))*sqrt(cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (b \tan \left (d x + c\right ) + a\right )} \sqrt{\cot \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)), x)